Numri e së bashku me numrat , , dhe njësinë imagjinare është njëra prej konstantave më të rëndësishme në matematikë. Numri e është numri i vetëm real i tillë që funksioni ex gjatë derivimit të tij nuk ndryshon. Funksioni ex quhet funksion eksponencial dhe funksioni inverz i tij është funksion logaritmik i cili për bazë e ka pikërisht numrin e. Numri e quhet edhe numër i Eulerit.

Pasi e është numër transcedent dhe iracional vlera e tij nuk mund të jepet në formë të një numri decimal të fundëm por ai është një numër decimal i pafundëm dhe joperiodik vlera etij me 20 shifra decimale është

2.71828 18284 59045 23536….

HistorikuRedakto

Konstanta e për herë të parë u shfaq në vitin 1618 në punimet në lidhje me logaritmet të matematikanit skocez John Napier jo si konstantë e izoluar, por vetëm si bazë e logaritmeve. Zbulimi i atribuohet matematikanit zviceran Jacob Bernoulli, i cili u përpoq të gjejë limitin e vargut:

 

vlera e të cilit në fakt është numri e (shënimi me këtë germë është dhënë nga matematikani Leonhard Euler në vitin 1727).

Paraqitja e numrit eRedakto

Numri e shfaqet në mënyra të ndryshme edhe atë si seri e pafundme, prodhim i pafundëm, thyesë e vazhdueshme, ose si limit i një vargu të pafundëm paraqitje kjo e cila është edhe kryesorja dhe merret si përkufizuesja e numrit në kurset fillestare të analizës matematike

 

Për llogaritjen e vlerës së tij me saktësi të dëshiruar më e përshtatshme është seria e pafundme

 

e cila konvergjon shumë shpejt.

Një paraqitje si thyesë e pafundme e vazhdueshme është kjo:

 

Numri e dhe numrat kompleksRedakto

Funksioni eksponencial ex si seri e Taylorit jepet me

 

nga ky barazim nëse në vend të x zëvendësojmë ix. dhe nëse kemi parasysh zhvillimin në seri të Taylorit për Funksionet trigonometrike sin x dhe cos x' atëherë e fitojmë formulën e Eulerit:

 

nga e cila për x = π fitohet identiteti i Eulerit:

 

Ngjajshëm,

 

prej ku rrjedh se

 

Për më tepër sipas vetive të fuqive

 

ky barazim njihet si Formula e de Moivreit.

Lidhje të jashtmeRedakto