teorinë e probabilitetit dhe statistikë, shpërndarja hipergjeometrike është një shpërndarje diskrete probabiliteti që përshkruan probabilitetin e sukseseve (tërheqjet e rastit për të cilat objekti i tërhequr ka një veçori të caktuar) në tërheqje pa zëvendësim, nga një popullsi e kufizuar me madhësi që përmban saktësisht objekte me atë veçori, ku çdo tërheqje është ose një sukses ose një dështim. Në të kundërt, shpërndarja binomiale përshkruan probabilitetin e sukseseve në tërheqje me zëvendësim.

Hipergjeometrike
Probability mass function
FDP Hipergjeometrike
Cumulative distribution function
FSHM Hipergjeometrike
Parametrat
FMGJ
FGSH ku është funksioni hipergjeometrik i përgjithësuar
Vlera e pritur
Moda
Varianca
Shtrirja
Kurtoza e tepërt

Përkufizimet

Redakto

Funksioni i masës së probabilitetit

Redakto

Kushtet e mëposhtme karakterizojnë shpërndarjen hipergjeometrike:

  • Rezultati i çdo tërheqje (elementet e popullatës që janë marrë në popullim) mund të klasifikohet në një nga dy kategoritë ndërsjellazi përjashtuese (p.sh. Kalon/Dështon ose i Punësuar/I papunësuar).
  • Probabiliteti i një suksesi ndryshon në çdo tërheqje, pasi çdo tërheqje zvogëlon popullsinë ( kampionimi pa zëvendësim nga një popullsi e fundme).

Një ndryshore e rastit   ndjek shpërndarjen hipergjeometrike nëse funksioni i masës së probabilitetit të tij (fmp) jepet nga [1]

 

ku

  •   është madhësia e popullsisë,
  •   është numri i gjëndjeve të suksesshme në popullatë,
  •   është numri i barazimeve (dmth. sasia e tërhequr në çdo provë),
  •   është numri i sukseseve të vërejtura,
  •   është një koeficient binomial .

FMP është pozitiv kur   .

Një ndryshore e rastit e shpërndarë hipergjeometrikisht me parametra  ,   dhe   shkruhet si   dhe ka funksion të masës së probabilitetit   si më sipër.

Vetitë

Redakto

Shembull pune

Redakto

Zbatimi klasik i shpërndarjes hipergjeometrike është kampionimi pa zëvendësim . Mendoni një vazo me dy ngjyra mermeri, të kuqe dhe të gjelbër. Përcaktoni tërheqjen e një mermeri të gjelbër si sukses (S) dhe tërheqjen e një mermeri të kuq si dështim (K) (analoge me shpërndarjen binomiale). Nëse ndryshorja   përshkruan numrin e të gjithë mermerëve në vazo dhe   përshkruan numrin e mermerëve të gjelbër, atëherë   korrespondon me numrin e mermerëve të kuq . Në këtë shembull,   është ndryshorja e rastit, rezultati i së cilës është  , numri i mermerëve të gjelbër të nxjerrë në eksperiment. Kjo situatë ilustrohet nga tabela e mëposhtme e rasteve :

tërhequr ngelur në vazo total
mermerët e gjelbër k Kk K
mermerët e kuq nk N + k − n − K N - K
total n N − n N

Tani, supozoni (për shembull) se ka 5 mermerë të gjelbër dhe 45 të kuq në urnë (vazo). Duke qëndruar pranë vazos, ju mbyllni sytë dhe tërhiqni 10 mermerë pa zëvendësim. Sa është probabiliteti që saktësisht 4 nga 10 janë të gjelbër? Vini re se megjithëse po vëzhgojmë sukses/dështim, të dhënat nuk modelohen saktë nga shpërndarja binomiale, sepse probabiliteti i suksesit në çdo provë nuk është i njëjtë, pasi madhësia e popullsisë së mbetur ndryshon ndërsa heqim çdo mermer.

Ky problem përmblidhet nga tabela e mëposhtme e kontigjencës:

tërhequr pa tërhequr total
mermerët e gjelbër k = 4 Kk = 1 K = 5
mermerët e kuq nk = 6 N + k − n − K = 39 N − K = 45
total n = 10 N − n = 40 N = 50

Probabiliteti për të nxjerrë saktësisht   mermerë të gjelbër mund të llogaritet me formulën

 

Prandaj, në këtë shembull llogaritni

 

Intuitivisht ne do të prisnim që të ishte edhe më e pamundur që të 5 mermerët e gjelbër të jenë në mesin e 10 të tërhequrve.

 

Siç pritej, probabiliteti i tërheqjes së 5 mermerëve të gjelbër është afërsisht 35 herë më pak i mundshëm se ai i tërheqjes së 4 prej tyre.

Simetritë

Redakto

Ndërrimi i roleve të mermerëve të gjelbër dhe të kuq:

 

Ndërrimi i roleve të mermerëve të tërhequr dhe jo të tërhequr:

 

Ndërrimi i roleve të mermerëve të gjelbër dhe të tërhequr:

 

Këto simetri gjenerojnë grupin dihedral   .

Kufijtë e bishtit

Redakto

Le të jetë   dhe   . Pastaj për   mund të nxjerrim kufijtë e mëposhtëm: [2]

 

ku

 

është divergjenca Kullback-Leibler dhe përdoret se   . [3]

Nëse   është më e madhe se  , mund të jetë e dobishme të aplikoni simetri për të "përmbysur" kufijtë, të cilët japin sa vijon: [3] [4]

 

Konkluzioni statistikor

Redakto

Testi hipergjeometrik

Redakto

Testi hipergjeometrik përdor shpërndarjen hipergjeometrike për të matur rëndësinë statistikore të tërheqjes së një popullimi të përbërë nga një numër specifik   suksesesh (nga   tërheqjet totale) nga një popullsi me madhësi   që përmban   sukseset. Në një test për mbipërfaqësimin e sukseseve në kampion, vlera p hipergjeometrike llogaritet si probabilitet i tërheqjes në mënyrë të rastësishme të   ose më shumë sukseseve nga popullata në   tërheqjet totale. Në një test për nënpërfaqësim, vlera p është probabiliteti i tërheqjes së rastësishme të   ose më pak sukseseve.

 
Biologu dhe statisticieni Ronald Fisher

Testi i bazuar në shpërndarjen hipergjeometrike (testi hipergjeometrik) është identik me versionin përkatës me një bisht të testit ekzakt të Fisherit . [5]

Testi përdoret shpesh për të identifikuar se cilat nën-popullata janë të mbi ose nën-përfaqësuara në një popullim. Ky test ka një gamë të gjerë zbatimesh. Për shembull, një grup marketingu mund të përdorë testin për të kuptuar bazën e tyre të klientëve duke testuar një grup klientësh të njohur për mbipërfaqësim të nëngrupeve të ndryshme demografike (p.sh., gra, njerëz nën 30 vjeç).

Shpërndarjet e lidhura

Redakto

Le të jetë   dhe   .

  • Nëse   atëherë   ka një shpërndarje Bernoulli me parametër   .
  • Le të ketë   një shpërndarje binomiale me parametra   dhe   ; kjo modelon numrin e sukseseve në problemin analog të kampionimit me zëvendësim. Nëse   dhe   janë të mëdha në krahasim me  , dhe   nuk është afër 0 ose 1, atëherë   dhe   kanë shpërndarje të ngjashme, dmth.   .
  • Nëse   është e madhe,   dhe   janë të mëdha në krahasim me  , dhe   nuk është afër 0 ose 1 atëherë
 

ku   është funksioni standard i shpërndarjes normale

Tabela e mëposhtme përshkruan katër shpërndarje që lidhen me numrin e sukseseve në një sekuencë tërheqjesh:

Me zëvendësim Asnjë zëvendësim
Numri i caktuar i tërheqjeve shpërndarja binomiale shpërndarja hipergjeometrike
Duke pasur parasysh numrin e dështimeve shpërndarje binomiale negative shpërndarje hipergjeometrike negative

Shpërndarja hipergjeometrike me shumë ndryshore

Redakto
Shpërndarja hipergjeometrike shumëndryshore
Parametrat 

 

 
 
Mbështetës 
FMGJ 
Vlera e pritur 
Varianca 
 
 

Modeli i një urne me mermerë të gjelbër dhe të kuq mund të shtrihet në rastin kur ka më shumë se dy ngjyra mermeri. Nëse ka   mermerë të ngjyrës   në urnë dhe ju merrni   mermerë në mënyrë të rastësishme pa zëvendësim, atëherë numri i mermerëve të secilës ngjyrë në mostër   ka shpërndarjen hipergjeometrike shumëndryshore:

 

Shembull

Redakto

Supozoni se në një urnë ka 5 mermerë të zinj, 10 të bardhë dhe 15 të kuq. Nëse zgjidhen gjashtë mermere pa zëvendësim, probabiliteti që të zgjidhen saktësisht dy nga çdo ngjyrë është

 

Ndodhja dhe aplikimet

Redakto

Zbatimi për auditimin e zgjedhjeve

Redakto
  1. ^ Rice, John A. (2007). Mathematical Statistics and Data Analysis (bot. Third). Duxbury Press. fq. 42. {{cite book}}: Mungon ose është bosh parametri |language= (Ndihmë!)
  2. ^ Hoeffding, Wassily (1963), "Probability inequalities for sums of bounded random variables" (PDF), Journal of the American Statistical Association, vëll. 58 no. 301, fq. 13–30, doi:10.2307/2282952, JSTOR 2282952 {{citation}}: Mungon ose është bosh parametri |language= (Ndihmë!).
  3. ^ a b "Another Tail of the Hypergeometric Distribution". wordpress.com. 8 dhjetor 2015. Marrë më 19 mars 2018. {{cite web}}: Mungon ose është bosh parametri |language= (Ndihmë!) Gabim referencash: Invalid <ref> tag; name "wordpress.com" defined multiple times with different content
  4. ^ Serfling, Robert (1974), "Probability inequalities for the sum in sampling without replacement", The Annals of Statistics, vëll. 2 no. 1, fq. 39–48, doi:10.1214/aos/1176342611 {{citation}}: Mungon ose është bosh parametri |language= (Ndihmë!).
  5. ^ Rivals, I.; Personnaz, L.; Taing, L.; Potier, M.-C (2007). "Enrichment or depletion of a GO category within a class of genes: which test?". Bioinformatics. 23 (4): 401–407. doi:10.1093/bioinformatics/btl633. PMID 17182697. {{cite journal}}: Mungon ose është bosh parametri |language= (Ndihmë!)