Shpërndarja hipergjeometrike
Në teorinë e probabilitetit dhe statistikë, shpërndarja hipergjeometrike është një shpërndarje diskrete probabiliteti që përshkruan probabilitetin e sukseseve (tërheqjet e rastit për të cilat objekti i tërhequr ka një veçori të caktuar) në tërheqje pa zëvendësim, nga një popullsi e kufizuar me madhësi që përmban saktësisht objekte me atë veçori, ku çdo tërheqje është ose një sukses ose një dështim. Në të kundërt, shpërndarja binomiale përshkruan probabilitetin e sukseseve në tërheqje me zëvendësim.
Probability mass function | |||
Cumulative distribution function | |||
Parametrat | |||
---|---|---|---|
FMGJ | |||
FGSH | ku është funksioni hipergjeometrik i përgjithësuar | ||
Vlera e pritur | |||
Moda | |||
Varianca | |||
Shtrirja | |||
Kurtoza e tepërt |
|
Përkufizimet
RedaktoFunksioni i masës së probabilitetit
RedaktoKushtet e mëposhtme karakterizojnë shpërndarjen hipergjeometrike:
- Rezultati i çdo tërheqje (elementet e popullatës që janë marrë në popullim) mund të klasifikohet në një nga dy kategoritë ndërsjellazi përjashtuese (p.sh. Kalon/Dështon ose i Punësuar/I papunësuar).
- Probabiliteti i një suksesi ndryshon në çdo tërheqje, pasi çdo tërheqje zvogëlon popullsinë ( kampionimi pa zëvendësim nga një popullsi e fundme).
Një ndryshore e rastit ndjek shpërndarjen hipergjeometrike nëse funksioni i masës së probabilitetit të tij (fmp) jepet nga [1]
ku
- është madhësia e popullsisë,
- është numri i gjëndjeve të suksesshme në popullatë,
- është numri i barazimeve (dmth. sasia e tërhequr në çdo provë),
- është numri i sukseseve të vërejtura,
- është një koeficient binomial .
FMP është pozitiv kur .
Një ndryshore e rastit e shpërndarë hipergjeometrikisht me parametra , dhe shkruhet si dhe ka funksion të masës së probabilitetit si më sipër.
Vetitë
RedaktoShembull pune
RedaktoZbatimi klasik i shpërndarjes hipergjeometrike është kampionimi pa zëvendësim . Mendoni një vazo me dy ngjyra mermeri, të kuqe dhe të gjelbër. Përcaktoni tërheqjen e një mermeri të gjelbër si sukses (S) dhe tërheqjen e një mermeri të kuq si dështim (K) (analoge me shpërndarjen binomiale). Nëse ndryshorja përshkruan numrin e të gjithë mermerëve në vazo dhe përshkruan numrin e mermerëve të gjelbër, atëherë korrespondon me numrin e mermerëve të kuq . Në këtë shembull, është ndryshorja e rastit, rezultati i së cilës është , numri i mermerëve të gjelbër të nxjerrë në eksperiment. Kjo situatë ilustrohet nga tabela e mëposhtme e rasteve :
tërhequr | ngelur në vazo | total | |
---|---|---|---|
mermerët e gjelbër | k | K − k | K |
mermerët e kuq | n − k | N + k − n − K | N - K |
total | n | N − n | N |
Tani, supozoni (për shembull) se ka 5 mermerë të gjelbër dhe 45 të kuq në urnë (vazo). Duke qëndruar pranë vazos, ju mbyllni sytë dhe tërhiqni 10 mermerë pa zëvendësim. Sa është probabiliteti që saktësisht 4 nga 10 janë të gjelbër? Vini re se megjithëse po vëzhgojmë sukses/dështim, të dhënat nuk modelohen saktë nga shpërndarja binomiale, sepse probabiliteti i suksesit në çdo provë nuk është i njëjtë, pasi madhësia e popullsisë së mbetur ndryshon ndërsa heqim çdo mermer.
Ky problem përmblidhet nga tabela e mëposhtme e kontigjencës:
tërhequr | pa tërhequr | total | |
---|---|---|---|
mermerët e gjelbër | k = 4 | K − k = 1 | K = 5 |
mermerët e kuq | n − k = 6 | N + k − n − K = 39 | N − K = 45 |
total | n = 10 | N − n = 40 | N = 50 |
Probabiliteti për të nxjerrë saktësisht mermerë të gjelbër mund të llogaritet me formulën
Prandaj, në këtë shembull llogaritni
Intuitivisht ne do të prisnim që të ishte edhe më e pamundur që të 5 mermerët e gjelbër të jenë në mesin e 10 të tërhequrve.
Siç pritej, probabiliteti i tërheqjes së 5 mermerëve të gjelbër është afërsisht 35 herë më pak i mundshëm se ai i tërheqjes së 4 prej tyre.
Simetritë
RedaktoNdërrimi i roleve të mermerëve të gjelbër dhe të kuq:
Ndërrimi i roleve të mermerëve të tërhequr dhe jo të tërhequr:
Ndërrimi i roleve të mermerëve të gjelbër dhe të tërhequr:
Këto simetri gjenerojnë grupin dihedral .
Kufijtë e bishtit
RedaktoLe të jetë dhe . Pastaj për mund të nxjerrim kufijtë e mëposhtëm: [2]
ku
është divergjenca Kullback-Leibler dhe përdoret se . [3]
Nëse është më e madhe se , mund të jetë e dobishme të aplikoni simetri për të "përmbysur" kufijtë, të cilët japin sa vijon: [3] [4]
Konkluzioni statistikor
RedaktoTesti hipergjeometrik
RedaktoTesti hipergjeometrik përdor shpërndarjen hipergjeometrike për të matur rëndësinë statistikore të tërheqjes së një popullimi të përbërë nga një numër specifik suksesesh (nga tërheqjet totale) nga një popullsi me madhësi që përmban sukseset. Në një test për mbipërfaqësimin e sukseseve në kampion, vlera p hipergjeometrike llogaritet si probabilitet i tërheqjes në mënyrë të rastësishme të ose më shumë sukseseve nga popullata në tërheqjet totale. Në një test për nënpërfaqësim, vlera p është probabiliteti i tërheqjes së rastësishme të ose më pak sukseseve.
Testi i bazuar në shpërndarjen hipergjeometrike (testi hipergjeometrik) është identik me versionin përkatës me një bisht të testit ekzakt të Fisherit . [5]
Testi përdoret shpesh për të identifikuar se cilat nën-popullata janë të mbi ose nën-përfaqësuara në një popullim. Ky test ka një gamë të gjerë zbatimesh. Për shembull, një grup marketingu mund të përdorë testin për të kuptuar bazën e tyre të klientëve duke testuar një grup klientësh të njohur për mbipërfaqësim të nëngrupeve të ndryshme demografike (p.sh., gra, njerëz nën 30 vjeç).
Shpërndarjet e lidhura
RedaktoLe të jetë dhe .
- Nëse atëherë ka një shpërndarje Bernoulli me parametër .
- Le të ketë një shpërndarje binomiale me parametra dhe ; kjo modelon numrin e sukseseve në problemin analog të kampionimit me zëvendësim. Nëse dhe janë të mëdha në krahasim me , dhe nuk është afër 0 ose 1, atëherë dhe kanë shpërndarje të ngjashme, dmth. .
- Nëse është e madhe, dhe janë të mëdha në krahasim me , dhe nuk është afër 0 ose 1 atëherë
ku është funksioni standard i shpërndarjes normale
Tabela e mëposhtme përshkruan katër shpërndarje që lidhen me numrin e sukseseve në një sekuencë tërheqjesh:
Me zëvendësim | Asnjë zëvendësim | |
---|---|---|
Numri i caktuar i tërheqjeve | shpërndarja binomiale | shpërndarja hipergjeometrike |
Duke pasur parasysh numrin e dështimeve | shpërndarje binomiale negative | shpërndarje hipergjeometrike negative |
Shpërndarja hipergjeometrike me shumë ndryshore
RedaktoParametrat | | ||
---|---|---|---|
Mbështetës | |||
FMGJ | |||
Vlera e pritur | |||
Varianca | |
Modeli i një urne me mermerë të gjelbër dhe të kuq mund të shtrihet në rastin kur ka më shumë se dy ngjyra mermeri. Nëse ka mermerë të ngjyrës në urnë dhe ju merrni mermerë në mënyrë të rastësishme pa zëvendësim, atëherë numri i mermerëve të secilës ngjyrë në mostër ka shpërndarjen hipergjeometrike shumëndryshore:
Shembull
RedaktoSupozoni se në një urnë ka 5 mermerë të zinj, 10 të bardhë dhe 15 të kuq. Nëse zgjidhen gjashtë mermere pa zëvendësim, probabiliteti që të zgjidhen saktësisht dy nga çdo ngjyrë është
Ndodhja dhe aplikimet
RedaktoZbatimi për auditimin e zgjedhjeve
Redakto- ^ Rice, John A. (2007). Mathematical Statistics and Data Analysis (bot. Third). Duxbury Press. fq. 42.
{{cite book}}
: Mungon ose është bosh parametri|language=
(Ndihmë!) - ^ Hoeffding, Wassily (1963), "Probability inequalities for sums of bounded random variables" (PDF), Journal of the American Statistical Association, vëll. 58 no. 301, fq. 13–30, doi:10.2307/2282952, JSTOR 2282952
{{citation}}
: Mungon ose është bosh parametri|language=
(Ndihmë!). - ^ a b "Another Tail of the Hypergeometric Distribution". wordpress.com. 8 dhjetor 2015. Marrë më 19 mars 2018.
{{cite web}}
: Mungon ose është bosh parametri|language=
(Ndihmë!) Gabim referencash: Invalid<ref>
tag; name "wordpress.com" defined multiple times with different content - ^ Serfling, Robert (1974), "Probability inequalities for the sum in sampling without replacement", The Annals of Statistics, vëll. 2 no. 1, fq. 39–48, doi:10.1214/aos/1176342611
{{citation}}
: Mungon ose është bosh parametri|language=
(Ndihmë!). - ^ Rivals, I.; Personnaz, L.; Taing, L.; Potier, M.-C (2007). "Enrichment or depletion of a GO category within a class of genes: which test?". Bioinformatics. 23 (4): 401–407. doi:10.1093/bioinformatics/btl633. PMID 17182697.
{{cite journal}}
: Mungon ose është bosh parametri|language=
(Ndihmë!)